1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
use crate::{Block, StreamClosure, Unsigned, STATE_WORDS};
use cipher::{
consts::{U1, U64},
BlockSizeUser, ParBlocksSizeUser, StreamBackend,
};
use core::marker::PhantomData;
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
#[inline]
#[target_feature(enable = "sse2")]
pub(crate) unsafe fn inner<R, F>(state: &mut [u32; STATE_WORDS], f: F)
where
R: Unsigned,
F: StreamClosure<BlockSize = U64>,
{
let state_ptr = state.as_ptr() as *const __m128i;
let mut backend = Backend::<R> {
v: [
_mm_loadu_si128(state_ptr.add(0)),
_mm_loadu_si128(state_ptr.add(1)),
_mm_loadu_si128(state_ptr.add(2)),
_mm_loadu_si128(state_ptr.add(3)),
],
_pd: PhantomData,
};
f.call(&mut backend);
state[12] = _mm_cvtsi128_si32(backend.v[3]) as u32;
}
struct Backend<R: Unsigned> {
v: [__m128i; 4],
_pd: PhantomData<R>,
}
impl<R: Unsigned> BlockSizeUser for Backend<R> {
type BlockSize = U64;
}
impl<R: Unsigned> ParBlocksSizeUser for Backend<R> {
type ParBlocksSize = U1;
}
impl<R: Unsigned> StreamBackend for Backend<R> {
#[inline(always)]
fn gen_ks_block(&mut self, block: &mut Block) {
unsafe {
let res = rounds::<R>(&self.v);
self.v[3] = _mm_add_epi32(self.v[3], _mm_set_epi32(0, 0, 0, 1));
let block_ptr = block.as_mut_ptr() as *mut __m128i;
for i in 0..4 {
_mm_storeu_si128(block_ptr.add(i), res[i]);
}
}
}
}
#[inline]
#[target_feature(enable = "sse2")]
unsafe fn rounds<R: Unsigned>(v: &[__m128i; 4]) -> [__m128i; 4] {
let mut res = *v;
for _ in 0..R::USIZE {
double_quarter_round(&mut res);
}
for i in 0..4 {
res[i] = _mm_add_epi32(res[i], v[i]);
}
res
}
#[inline]
#[target_feature(enable = "sse2")]
unsafe fn double_quarter_round(v: &mut [__m128i; 4]) {
add_xor_rot(v);
rows_to_cols(v);
add_xor_rot(v);
cols_to_rows(v);
}
#[inline]
#[target_feature(enable = "sse2")]
unsafe fn rows_to_cols([a, _, c, d]: &mut [__m128i; 4]) {
*c = _mm_shuffle_epi32(*c, 0b_00_11_10_01); *d = _mm_shuffle_epi32(*d, 0b_01_00_11_10); *a = _mm_shuffle_epi32(*a, 0b_10_01_00_11); }
#[inline]
#[target_feature(enable = "sse2")]
unsafe fn cols_to_rows([a, _, c, d]: &mut [__m128i; 4]) {
*c = _mm_shuffle_epi32(*c, 0b_10_01_00_11); *d = _mm_shuffle_epi32(*d, 0b_01_00_11_10); *a = _mm_shuffle_epi32(*a, 0b_00_11_10_01); }
#[inline]
#[target_feature(enable = "sse2")]
unsafe fn add_xor_rot([a, b, c, d]: &mut [__m128i; 4]) {
*a = _mm_add_epi32(*a, *b);
*d = _mm_xor_si128(*d, *a);
*d = _mm_xor_si128(_mm_slli_epi32(*d, 16), _mm_srli_epi32(*d, 16));
*c = _mm_add_epi32(*c, *d);
*b = _mm_xor_si128(*b, *c);
*b = _mm_xor_si128(_mm_slli_epi32(*b, 12), _mm_srli_epi32(*b, 20));
*a = _mm_add_epi32(*a, *b);
*d = _mm_xor_si128(*d, *a);
*d = _mm_xor_si128(_mm_slli_epi32(*d, 8), _mm_srli_epi32(*d, 24));
*c = _mm_add_epi32(*c, *d);
*b = _mm_xor_si128(*b, *c);
*b = _mm_xor_si128(_mm_slli_epi32(*b, 7), _mm_srli_epi32(*b, 25));
}